Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(9): e202310797, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37966433

RESUMO

Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.


Assuntos
Ácidos Nucleicos , Oligonucleotídeos , Oligonucleotídeos/química , Nucleosídeos , DNA/química
2.
ACS Chem Biol ; 18(12): 2441-2449, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37962075

RESUMO

The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.


Assuntos
Ácidos Nucleicos , RNA , Epigênese Genética , Biologia
3.
Nat Commun ; 14(1): 7597, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989750

RESUMO

NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.


Assuntos
NAD , RNA , NAD/metabolismo , Adenosina Difosfato Ribose/metabolismo , Archaea/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
4.
Acc Chem Res ; 56(21): 3000-3009, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37852615

RESUMO

Ribonucleic acid (RNA) is composed primarily of four canonical building blocks. In addition, more than 170 modifications contribute to its stability and function. Metabolites like nicotinamide adenine dinucleotide (NAD) were found to function as 5'-cap structures of RNA, just like 7-methylguanosine (m7G). The identification of NAD-capped RNA sequences was first made possible by NAD captureSeq, a multistep protocol for the specific targeting, purification, and sequencing of NAD-capped RNAs, developed in the authors' laboratory in the year 2015. In recent years, a number of NAD-RNA identification protocols have been developed by researchers around the world. They have enabled the discovery and identification of NAD-RNAs in bacteria, archaea, yeast, plants, mice, and human cells, and they play a key role in studying the biological functions of NAD capping. We introduce the four parameters of yield, specificity, evaluability, and throughput and describe to the reader how an ideal NAD-RNA identification protocol would perform in each of these disciplines. These parameters are further used to describe and analyze existing protocols that follow two general methodologies: the capture approach and the decapping approach. Capture protocols introduce an exogenous moiety into the NAD-cap structure in order to either specifically purify or sequence NAD-capped RNAs. In decapping protocols, the NAD cap is digested to 5'-monophosphate RNA, which is then specifically targeted and sequenced. Both approaches, as well as the different protocols within them, have advantages and challenges that we evaluate based on the aforementioned parameters. In addition, we suggest improvements in order to meet the future needs of research on NAD-modified RNAs, which is beginning to emerge in the area of cell-type specific samples. A limiting factor of the capture approach is the need for large amounts of input RNA. Here we see a high potential for innovation within the key targeting step: The enzymatic modification reaction of the NAD-cap structure catalyzed by ADP-ribosyl cyclase (ADPRC) is a major contributor to the parameters of yield and specificity but has mostly seen minor changes since the pioneering protocol of NAD captureSeq and needs to be more stringently analyzed. The major challenge of the decapping approach remains the specificity of the decapping enzymes, many of which act on a variety of 5'-cap structures. Exploration of new decapping enzymes or engineering of already known enzymes could lead to improvements in NAD-specific protocols. The use of a curated set of decapping enzymes in a combinatorial approach could allow for the simultaneous detection of multiple 5'-caps. The throughput of both approaches could be greatly improved by early sample pooling. We propose that this could be achieved by introducing a barcode RNA sequence before or immediately after the NAD-RNA targeting steps. With increased processing capacity and a potential decrease in the cost per sample, protocols will gain the potential to analyze large numbers of samples from different growth conditions and treatments. This will support the search for biological roles of NAD-capped RNAs in all types of organisms.


Assuntos
NAD , Capuzes de RNA , Animais , Humanos , Camundongos , NAD/química , NAD/genética , NAD/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo
5.
Nature ; 620(7976): 1054-1062, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587340

RESUMO

The mechanisms by which viruses hijack the genetic machinery of the cells they infect are of current interest. When bacteriophage T4 infects Escherichia coli, it uses three different adenosine diphosphate (ADP)-ribosyltransferases (ARTs) to reprogram the transcriptional and translational apparatus of the host by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD) as a substrate1,2. NAD has previously been identified as a 5' modification of cellular RNAs3-5. Here we report that the T4 ART ModB accepts not only NAD but also NAD-capped RNA (NAD-RNA) as a substrate and attaches entire RNA chains to acceptor proteins in an 'RNAylation' reaction. ModB specifically RNAylates the ribosomal proteins rS1 and rL2 at defined Arg residues, and selected E. coli and T4 phage RNAs are linked to rS1 in vivo. T4 phages that express an inactive mutant of ModB have a decreased burst size and slowed lysis of E. coli. Our findings reveal a distinct biological role for NAD-RNA, namely the activation of the RNA for enzymatic transfer to proteins. The attachment of specific RNAs to ribosomal proteins might provide a strategy for the phage to modulate the host's translation machinery. This work reveals a direct connection between RNA modification and post-translational protein modification. ARTs have important roles far beyond viral infections6, so RNAylation may have far-reaching implications.


Assuntos
ADP Ribose Transferases , Bacteriófago T4 , Proteínas de Escherichia coli , Escherichia coli , NAD , RNA , Proteínas Virais , ADP Ribose Transferases/metabolismo , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virologia , NAD/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , RNA/química , RNA/genética , RNA/metabolismo , Biossíntese de Proteínas , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional
6.
ACS Chem Biol ; 18(8): 1838-1845, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530071

RESUMO

The development of fluorescent probes for visualizing endogenous RNAs in living cells is crucial to understand their complex biochemical roles. Recently, we developed RhoBAST, one of the most photostable and brightest fluorescence light-up aptamers (FLAPs), as a genetically encoded tag for imaging messenger RNAs (mRNAs). Here, we describe programmable RhoBAST sequences flanked by target-binding hybridization arms that light up only when bound to the untagged target RNA in trans. As part of the hybridization arm, we introduced a modular transducer sequence that switches the secondary structure of RhoBAST and renders it incapable of binding to its fluorogenic ligand TMR-DN. Only the specific binding of the hybridization arms to the target RNA triggers the correct folding of RhoBAST and fluorescence light-up after binding to TMR-DN. We characterized the structural switching of programmable RhoBAST sequences extensively in vitro and applied them to visualize untagged mRNAs in live bacteria.


Assuntos
Aptâmeros de Nucleotídeos , RNA , RNA Mensageiro/metabolismo , RNA/química , Hibridização de Ácido Nucleico , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química
7.
J Am Chem Soc ; 145(29): 15971-15980, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435826

RESUMO

The encoding step of translation involves attachment of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases, themselves the product of coded peptide synthesis. So, the question arises─before these enzymes evolved, how were primordial tRNAs selectively aminoacylated? Here, we demonstrate enzyme-free, sequence-dependent, chemoselective aminoacylation of RNA. We investigated two potentially prebiotic routes to aminoacyl-tRNA acceptor stem-overhang mimics and analyzed those oligonucleotides undergoing the most efficient aminoacylation. Overhang sequences do not significantly influence the chemoselectivity of aminoacylation by either route. For aminoacyl-transfer from a mixed anhydride donor strand, the chemoselectivity and stereoselectivity of aminoacylation depend on the terminal three base pairs of the stem. The results support early suggestions of a second genetic code in the acceptor stem.


Assuntos
Aminoacil-tRNA Sintetases , RNA , RNA/metabolismo , Aminoacilação , Sequência de Bases , Código Genético , RNA de Transferência/química , Aminoacil-tRNA Sintetases/metabolismo , Conformação de Ácido Nucleico
8.
Nat Commun ; 14(1): 3879, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391423

RESUMO

Live-cell RNA imaging with high spatial and temporal resolution remains a major challenge. Here we report the development of RhoBAST:SpyRho, a fluorescent light-up aptamer (FLAP) system ideally suited for visualizing RNAs in live or fixed cells with various advanced fluorescence microscopy modalities. Overcoming problems associated with low cell permeability, brightness, fluorogenicity, and signal-to-background ratio of previous fluorophores, we design a novel probe, SpyRho (Spirocyclic Rhodamine), which tightly binds to the RhoBAST aptamer. High brightness and fluorogenicity is achieved by shifting the equilibrium between spirolactam and quinoid. With its high affinity and fast ligand exchange, RhoBAST:SpyRho is a superb system for both super-resolution SMLM and STED imaging. Its excellent performance in SMLM and the first reported super-resolved STED images of specifically labeled RNA in live mammalian cells represent significant advances over other FLAPs. The versatility of RhoBAST:SpyRho is further demonstrated by imaging endogenous chromosomal loci and proteins.


Assuntos
Corantes Fluorescentes , Oligonucleotídeos , Animais , Rodaminas , Ionóforos , Microscopia de Fluorescência , RNA , Mamíferos
9.
Nat Chem Biol ; 19(4): 478-487, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658339

RESUMO

Fluorescent light-up aptamers (FLAPs) have emerged as valuable tools to visualize RNAs, but are mostly limited by their poor brightness, low photostability, and high fluorescence background in live cells. Exploiting the avidity concept, here we present two of the brightest FLAPs with the strongest aptamer-dye interaction, high fluorogenicity, and remarkable photostability. They consist of dimeric fluorophore-binding aptamers (biRhoBAST and biSiRA) embedded in an RNA scaffold and their bivalent fluorophore ligands (bivalent tetramethylrhodamine TMR2 and silicon rhodamine SiR2). Red fluorescent biRhoBAST-TMR2 and near-infrared fluorescent biSiRA-SiR2 are orthogonal to each other, facilitating simultaneous visualization of two different RNA species in live cells. One copy of biRhoBAST allows for simple and robust mRNA imaging with strikingly higher signal-to-background ratios than other FLAPs. Moreover, eight biRhoBAST repeats enable single-molecule mRNA imaging and tracking with minimal perturbation of their localization, translation, and degradation, demonstrating the potential of avidity-enhanced FLAPs for imaging RNA dynamics.


Assuntos
Aptâmeros de Nucleotídeos , RNA Mensageiro/metabolismo , Aptâmeros de Nucleotídeos/química , RNA/química , Corantes Fluorescentes/química , Fluorescência
10.
Biomolecules ; 12(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36008959

RESUMO

Coenzyme A (CoA) is ubiquitous and essential for key cellular processes in any living organism. Primary degradation of CoA occurs by enzyme-mediated pyrophosphate hydrolysis intracellularly and extracellularly to form adenosine 3',5'-diphosphate and 4'-phosphopantetheine (PPanSH). The latter can be recycled for intracellular synthesis of CoA. Impairments in the CoA biosynthetic pathway are linked to a severe form of neurodegeneration with brain iron accumulation for which no disease-modifying therapy is available. Currently, exogenous administration of PPanSH is examined as a therapeutic intervention. Here, we describe biosynthetic access to thiophosphate analogs of PPanSH, 3'-dephospho-CoA, and CoA. The stabilizing effect of thiophosphate modifications toward degradation by extracellular and peroxisomal enzymes was studied in vitro. Experiments in a CoA-deficient cell model suggest a biomimetic potential of the PPanSH thiophosphate analog PSPanSH (C1). According to our findings, the administration of PSPanSH may provide an alternative approach to support intracellular CoA-dependent pathways.


Assuntos
Biomimética , Coenzima A , Vias Biossintéticas , Coenzima A/metabolismo , Fosfatos
11.
Noncoding RNA ; 8(4)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35893229

RESUMO

Novel features of coenzyme A (CoA) and its precursor, 3'-dephospho-CoA (dpCoA), recently became evident. dpCoA was found to attach to 5'-ends of small ribonucleic acids (dpCoA-RNAs) in two bacterial species (Escherichia coli and Streptomyces venezuelae). Furthermore, CoA serves, in addition to its well-established coenzymatic roles, as a ubiquitous posttranslational protein modification ('CoAlation'), thought to prevent the irreversible oxidation of cysteines. Here, we first identified and quantified dpCoA-RNAs in the small RNA fraction of the human pathogen Staphylococcus aureus, using a newly developed enzymatic assay. We found that the amount of dpCoA caps was similar to that of the other two bacteria. We furthermore tested the hypothesis that, in the environment of a cell, the free thiol of the dpCoA-RNAs, as well as other sulfur-containing RNA modifications, may be oxidized by disulfide bond formation, e.g., with CoA. While we could not find evidence for such an 'RNA CoAlation', we observed that CoA disulfide reductase, the enzyme responsible for reducing CoA homodisulfides in S. aureus, did efficiently reduce several synthetic dpCoA-RNA disulfides to dpCoA-RNAs in vitro. This activity may imply a role in reversing RNA CoAlation.

12.
Angew Chem Int Ed Engl ; 61(13): e202117735, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35076154

RESUMO

Nucleosidic diarylethenes (DAEs) are an emerging class of photochromes but have rarely been used in materials science. Here, we have developed doubly methylated DAEs derived from 2'-deoxyuridine with high thermal stability and fatigue resistance. These new photoswitches not only outperform their predecessors but also rival classical non-nucleosidic DAEs. To demonstrate the utility of these new DAEs, we have designed an all-optical excitonic switch consisting of two oligonucleotides: one strand containing a fluorogenic double-methylated 2'-deoxyuridine as a fluorescence donor and the other a tricyclic cytidine (tC) as acceptor, which together form a highly efficient conditional Förster-Resonance-Energy-Transfer (FRET) pair. The system was operated in liquid and solid phases and showed both strong distance- and orientation-dependent photochromic FRET. The superior ON/OFF contrast was maintained over up to 100 switching cycles, with no detectable fatigue.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Oligonucleotídeos , DNA , Desoxiuridina , Nucleosídeos
13.
Chem Sci ; 12(34): 11593-11603, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667559

RESUMO

Diarylethenes (DAEs) are an established class of photochromic molecules, but their effective incorporation into pre-existing targets is synthetically difficult. Here we describe a new class of DAEs in which one of the aryl rings is a 1,2,3-triazole that is formed by "click" chemistry between an azide on the target and a matching alkyne-cyclopentene-thiophene component. This late-stage zero-length linking allows for tight integration of the DAE with the target, thereby increasing the chances for photomodulation of target functions. Nineteen different DAEs were synthesized and their properties investigated. All showed photochromism. Electron-withdrawing groups, and in particular -M-substituents at the triazole and/or thiophene moiety resulted in DAEs with high photo- and thermostability. Further, the chemical nature of the cyclopentene bridge had a strong influence on the behaviour upon UV light irradiation. Incorporation of perfluorinated cyclopentene led to compounds with high photo- and thermostability, but the reversible photochromic reaction was restricted to halogenated solvents. Compounds containing the perhydrogenated cyclopentene bridge, on the other hand, allowed the reversible photochromic reaction in a wide range of solvents, but had on average lower photo- and thermostabilities. The combination of the perhydrocyclopentene bridge and electron-withdrawing groups resulted in a DAE with improved photostability and no solvent restriction. Quantum chemical calculations helped to identify the photoproducts formed in halogenated as well as non-halogenated solvents. For two optimized DAE photoswitches, photostationary state composition and reaction quantum yields were determined. These data revealed efficient photochemical ring closure and opening. We envision applications of these new photochromic diarylethenes in photonics, nanotechnology, photobiology, photopharmacology and materials science.

14.
J Biol Phys ; 47(4): 371-386, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34698957

RESUMO

SAM-I riboswitches regulate gene expression through transcription termination upon binding a S-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length Bacillus subtilis yitJ SAM-I riboswitch as a function of Mg2+ and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, S-adenosyl-L-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg2+ concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated 'hub' state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription.


Assuntos
Riboswitch , Bacillus subtilis/genética , Ligantes , Conformação de Ácido Nucleico , S-Adenosilmetionina
15.
Chemistry ; 27(69): 17386-17394, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519390

RESUMO

The reversible modulation of fluorescence signals by light is of high interest for applications in super-resolution microscopy, especially on the DNA level. In this article we describe the systematic variation of the core structure in nucleoside-based diarylethenes (DAEs), in order to generate intrinsically fluorescent photochromes. The introduction of aromatic bridging units resulted in a bathochromic shift of the visible absorption maximum of the closed-ring form, but caused reduced thermal stability and switching efficiency. The replacement of the thiophene aryl unit by thiazol improved the thermal stability, whereas the introduction of a benzothiophene unit led to inherent and modulatable turn-off fluorescence. This feature was further optimized by introducing a fluorescent indole nucleobase into the DAE core, resulting in an effective photoswitch with a fluorescence quantum yield of 0.0166 and a fluorescence turn-off factor of 3.2. The site-specific incorporation into an oligonucleotide resulted in fluorescence-switchable DNA with high cyclization quantum yields and switching efficiency, which may facilitate future applications.


Assuntos
Nucleosídeos , Oligonucleotídeos , Etilenos , Fluorescência , Processos Fotoquímicos
16.
Chem Commun (Camb) ; 57(64): 7974, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338696

RESUMO

Correction for 'Optochemical control of transcription by the use of 7-deaza-adenosine-based diarylethenes' by Simon M. Büllmann et al., Chem. Commun., 2021, 57, 6596-6599, DOI 10.1039/D1CC02639A.

17.
Angew Chem Int Ed Engl ; 60(39): 21441-21448, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34309994

RESUMO

Fluorescent light-up RNA aptamers (FLAPs) have become promising tools for visualizing RNAs in living cells. Specific binding of FLAPs to their non-fluorescent cognate ligands results in a dramatic fluorescence increase, thereby allowing RNA imaging. Here, we present a color-shifting aptamer-fluorophore system, where the free dye is cyan fluorescent and the aptamer-dye complex is near-infrared (NIR) fluorescent. Unlike other reported FLAPs, this system enables ratiometric RNA imaging. To design the color-shifting system, we synthesized a series of environmentally sensitive benzopyrylium-coumarin hybrid fluorophores which exist in equilibrium between a cyan fluorescent spirocyclic form and a NIR fluorescent zwitterionic form. As an RNA tag, we evolved a 38-nucleotide aptamer that selectively binds the zwitterionic forms with nanomolar affinity. We used this system as a light-up RNA marker to image mRNAs in the NIR region and demonstrated its utility in ratiometric analysis of target RNAs expressed at different levels in single cells.


Assuntos
Aptâmeros de Nucleotídeos/química , Cor , Fluorescência , Corantes Fluorescentes/química , RNA/análise , Aptâmeros de Nucleotídeos/síntese química , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Raios Infravermelhos , Microscopia Confocal , Estrutura Molecular
18.
Chem Commun (Camb) ; 57(54): 6596-6599, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114572

RESUMO

Out of nine different 7-deaza-adenosine diarylethenes, we identified a high-performance photoswitch, suitable for the synthesis of photochromic DNA. By using solid phase synthesis, a photoresponsive T7 promotor was generated which allowed reversibly modulating the rate of enzymatic RNA synthesis in vitro.


Assuntos
Adenosina/química , Etilenos/química , DNA/síntese química , DNA/química , DNA/genética , Processos Fotoquímicos , Transcrição Gênica
19.
Chem Commun (Camb) ; 57(28): 3480-3483, 2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33688891

RESUMO

We describe the development of a proximity-induced bio-orthogonal inverse electron demand Diels-Alder reaction that exploits the high-affinity interaction between a dienophile-modified RhoBAST aptamer and its tetramethyl rhodamine methyltetrazine substrate. We applied this concept for covalent RNA labeling in proof-of-principle experiments.


Assuntos
Aptâmeros de Nucleotídeos/química , RNA/química , Coloração e Rotulagem , Aptâmeros de Nucleotídeos/síntese química , Reação de Cicloadição , Estrutura Molecular
20.
Nat Biotechnol ; 39(6): 686-690, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33574610

RESUMO

Overcoming limitations of previous fluorescent light-up RNA aptamers for super-resolution imaging, we present RhoBAST, an aptamer that binds a fluorogenic rhodamine dye with fast association and dissociation kinetics. Its intermittent fluorescence emission enables single-molecule localization microscopy with a resolution not limited by photobleaching. We use RhoBAST to image subcellular structures of RNA in live and fixed cells with about 10-nm localization precision and a high signal-to-noise ratio.


Assuntos
Aptâmeros de Nucleotídeos/química , Rodaminas/química , Corantes Fluorescentes/química , Cinética , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...